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Abstract 

 

Cross-domain recommendation (CDR) has become a 

research hot spot in recent years. CDR learns the 

information in the source domain and transfer it into the 

target domain. Recently, autoencoder in deep learning 

has been utilized in CDR. However, existing method 

cannot reveal the semantic relationships of latent 

representations. In this paper, we propose a novel user 

group enhanced model for CDR based on Transformer 

(TransCDR) that provides a solution to this challenge. 

Specifically, we propose a novel user group enhanced 

methodology and a novel encoder-decoder framework 

that learns the semantic information via Transformer in 

the encoded latent space, which open a new research 

direction for CDR. Experimental results show that our 

model is competitive with state-of-art methods and can 

learn the semantic relationships of user rating patterns. 

Our code is available1. 

1. Introduction 

Recommendation systems have long been a hotspot 

area in machine learning. In the last decade, there were 

numerous researches on recommendation systems. 

Recently, as deep learning become prevalent in all 

research domains. Neural networks started in take place 

in recommendation systems [1-3] and achieved 

promising and competitive performance compared with 

traditional numerical methods [4], such as matrix 

factorization (MF). In order to solve the cold start and 

sparsity problems, cross-domain recommendation 

(CDR) has attracted much attention in the past few years.  

As an emerging research area, existing CDR methods 

are mainly based on traditional methodologies or 

primitive fully connected neural networks (FCN), which 

means the superior architectures, such as graph neural 

network (GCN), are not explored in literature. Another 

reason is that the data structure of CDR has large 

differences compared with the main stream tasks that 

 
1Code is available at: https://github.com/Younai2021/TransCDR 

can be easily modified with deep learning 

methodologies. This challenge includes: 1) severe data 

sparsity versus the intrinsic data greedy nature of deep 

neural networks. 2) The objective of CDR is hard to 

restate in deep learning styles. Most methods for CDR 

still rely on the ideology of MF, which is not capable of 

parallel training.  

Therefore, in this work, we explore a novel 

methodology for CDR using the cutting-edge 

Transformer architecture. Specifically, we propose a 

novel framework for CDR, named as user group CDR. 

In contrast to conventional CDR objectives that predicts 

single user’s ratings, we propose to calculate a group of 

users’ information and parallelly compute and predict. 

In this framework, the computational efficiency can be 

exponentially reduced. Besides, we present a novel and 

neat encoder-decoder architecture for CDR based on 

Transformer. Other than existing approaches that are 

either hard to train or have sophisticated modules, our 

method is simple, direct, and efficient. We follow the 

Occam’s razor principle that has been verified in most 

state-of-the-art methods [5-8] in natural language 

processing (NLP). The input of our model is a group of 

users with their rating patterns. Then, we use encoder to 

encode these patterns into dense representations in low 

dimensional spaces, this tackles the sparsity problem in 

certain degree. Next, several Transformer blocks are 

applied to exploit the rating pattern relationships among 

the group of users. In this way, the user preference in the 

source domain can be readily learned by the attention 

mechanism. At last, the decoder reconstructs the original 

rating sequences to get the final predictions of the whole 

group. Our methodology achieves promising and 

competitive results without bells and whistles. Our 

contributions are summarized as follows: 

1) We propose a novel user group enhanced 

methodology for CDR, which paves a brand-new road 

for deep learning methodology in CDR. 

2) We propose a novel encoder-decoder framework 

for CDR based on Transformer, in which the 

relationships of different users can be learned. 
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3) We conduct experiments on two datasets to 

evaluate our model and investigate the effectiveness of 

Transformer. 

4) We provide possible future work directions on 

Transformer based CDR. 

2. Related Work 

2.1. Cross-domain recommendation systems 

Generally, cross-domain recommendation can be 

categorized into matrix factorization (MF)-based 

methods and autoencoder (AE)-based methods. The 

main stream is MF-based methods, which aims to learn 

a user latent vector and an item latent vector and then 

combine them to get the final prediction by matrix 

multiplication or generalized matrix multiplication 

using neural networks. In essence, these methods must 

depend on an explicitly defined user-item interaction 

function to get the prediction. On the bright side, this 

reserves the interpretability of the model. However, the 

indispensable user-item interaction extremely restricts 

the expression ability of the model. The other category 

is AE-based methods which learns the user rating 

pattern by mapping the ratings in to a latent semantic 

space by an encoder and reconstruct the ratings to the 

original space by a decoder. These methods can better 

learn the users’ overall rating preferences compared to 

MF-based methods. However, how to learn the semantic 

information in the latent space remains intact. 

2.2. Transformer 

Currently, Transformer [9] has been applied in 

numerous domains, such as natural language processing 

[6], visual recognition, object detection. However, 

Transformer remains intact in cross-domain 

recommendation systems. Impressed by the 

transformer’s powerful ability of learning the 

relationships among word sequences, we decide to find 

a way to apply Transformer architecture in CDR to learn 

the semantic information in the latent rating 

representations. Inspired by recent Transformer 

applications on many different domains, we find a way 

to use Transformer in CDR, that is collecting a group of 

user ratings and considering them as a sequence, then 

input them into the Transformer blocks to get the 

interacted user rating representations, and then 

reconstruct the latent representation to the original form 

to get the prediction. This methodology is common in 

Transformer based methods but still untouched in the 

CDR domain. Therefore, we explore the Transformer 

architecture in CDR for the first time. 

 

 

3. TransCDR 

3.1. Problem Definition 

In this paper, we assume that the input data takes the 

form of explicit feedbacks such as user ratings of items. 

We also assume that the source and target domains have 

the same set of users, denoted by 𝒰 = {1,2, … , 𝑈}. The 

item sets from the source and target domains are ℐ𝑆 =
{1,2, … 𝐼𝑆} and ℐ𝑇 = {1,2, … 𝐼𝑇}, where 𝑆 and 𝑇 are the 

item amount of source and target domains respectively. 

The corresponding rating matrices are given by 𝒴𝑆 =
{𝑦𝑢𝑖

𝑆 |𝑢 ∈ 𝒰, 𝑖 ∈ ℐ𝑆} and 𝒴𝑇 = {𝑦𝑢𝑖
𝑇 |𝑢 ∈ 𝒰, 𝑖 ∈ ℐ𝑇}. We 

denote the set of observed item ratings given by 𝑢 as ℐ𝑢
𝑆 

(ℐ𝑢
𝑇 ), and the unobserved ones as ℐ𝑢

𝑆̅̅̅  (ℐ𝑢
𝑇̅̅ ̅) for source 

(target) domain. In each domain, the goal of 

recommendation can be specified as selecting a subset 

of items from ℐ�̅�
𝑆  (ℐ�̅�

𝑇 ) for user 𝑢  according to certain 

criteria that maximizes the user’s satisfaction. In other 

words, the recommendation model aims to give 

predictions on the unknown ratings of each user, i.e., 

�̂�𝑢𝑖
𝑆 (𝑢 ∈ 𝒰, 𝑖 ∈ ℐ�̅�

𝑆) or �̂�𝑢𝑖
𝑇 (𝑢 ∈ 𝒰, 𝑖 ∈ ℐ�̅�

𝑇). The values of 

�̂�𝑢𝑖
𝑆  (�̂�𝑢𝑖

𝑇 ) are numerical ratings in a certain range, e.g. 

[1,5]. The recommendation task we consider here is the 

single domain problem, where we predict �̂�𝑢𝑖
𝑇 (𝑢 ∈

𝒰, 𝑖 ∈ ℐ�̅�
𝑇) , via leveraging the information from the 

source rating matrix 𝒴𝑆. We use widely-adopted metrics 

to measure the performance of all approaches used in 

this paper, such as RMSE defined by 

√(1/𝑀𝑁) ∑ ∑ (�̂�𝑢𝑖
𝑇 − 𝑦𝑢𝑖

𝑇 )2𝑁
𝑖=1

𝑀
𝑢=1 , where 𝑀, 𝑁  denote 

the number of users and items in the testing set 

respectively. 

3.2. User Group Enhancement for CDR 

Traditional CDR models are trained and tested on 

single user, which is not a propriate formulation for deep 

learning methodology. Therefore, in this paper, we 

firstly propose to train and predict ratings on a user 

group scale. As shown in Fig.1, the input of the model 

is a user group, denoted by 𝒢 = {𝑢1, 𝑢2, … 𝑢𝑘}, where 𝑘 

is the group size. Then, the ratings of each user on two 

domains are selected by the user index and concatenated 

as the input the model. Accordingly, the output of the 

model is the user group ratings on two domains, denoted 

by ℛ̂ = {ℛ̂𝑆, ℛ̂𝑇} = {ℐ̂1
𝑆, ℐ̂2

𝑆, … , ℐ̂𝑘
𝑆, ℐ̂1

𝑇 , … ℐ̂𝑘
𝑇} , where ℐ̂𝑖

𝑆 

is the 𝑖-th user’s ratings in the source domain and ℐ̂𝑖
𝑇 is 

the ratings in the target domain. By redefine the task in 

a group scale, the models can be trained more efficiently 

and the relationships of different users can be learned by 

the model. In the training stage ℛ̂ is optimized while in 

the inference stage, only ℛ̂𝑇 is used for prediction in the 

target domain. 
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Figure 1: Overview of TransCDR. The input is a user group. First, the rating patterns of each user on both source domain and target domain is feed 

into two domain specific encoders. Then, the hidden representations of the rating patterns are processed by the Transformer blocks. Finally, the 
processed hidden representations are retrieved into original space by two domain specific decoders. The output of decoder is the predicted ratings of 

each user in the user group. 

 

3.3. Transformer Framework for CDR 

Based on user group formulation, we propose a novel 

encoder-decoder framework for CDR based on 

Transformer. Autorec [10] explored autoencoder 

framework for collaborate filtering (CF). We believe 

that autoencoder (AE) framework is a promising 

alternative against widely adopted matrix factorization 

(MF) framework. Therefore, in this paper, we further 

explore the AE framework with up-to-date deep learning 

architectures. We only focus on the User autoencoder in 

this work and defer Item autoencoder in the future work.  

 

Encoder. First, the source and target domain 

encoders learn a set of embeddings to represent each 

user’s preferences. The encoders take the partially 

observed rating vectors for each user, i.e., 𝑦𝑢
𝑆 and 𝑦𝑢

𝑇  as 

input and maps each vector in to low-dimensional dense 

latent space where the property and relationships of 

patterns can be better revealed than in the original sparse 

space. The encoders can be formulated as: 

ℎ𝑢
𝑆 = ℰ𝑆(𝑦𝑢

𝑆) = 𝜎(𝑊1𝑦𝑢
𝑆 + 𝑏1) (1) 

ℎ𝑢
𝑇 = ℰ𝑇(𝑦𝑢

𝑇) = 𝜎(𝑊2𝑦𝑢
𝑇 + 𝑏2) (2) 

where ℰ𝑆(•) and ℰ𝑇(•) denote source domain encoder 

and target domain encoder. 𝜎(•)  is the activation 

function. ℎ𝑢
𝑆  and ℎ𝑢

𝑇  are the embeddings of rating 

patterns. The embeddings can be either trained using 

Autorec or directly trained end-to-end in the TransCDR. 

 

Transformer Blocks. Transformer blocks is the 

central part of TransCDR. We use the vanilla 

Transformer architecture [9] in this work and leave the 

better modifications, such as deformable Transformer 

[11], ConViT [12], as a future work. The input of 

Transformer is the rating embedding sequence of a 

group of users in two domains, which is represented as: 

𝐻 = [ℎ1
𝑆, ℎ2

𝑆, … ℎ𝑘
𝑆 , ℎ1

𝑇 , ℎ2
𝑇 , … , ℎ𝑘

𝑇] (3) 

Transformer is constructed by stacking M blocks. 

Each block comprises a multi-head self-attention (MSA) 

module and a multi-layer perception (MLP) module, 

with a layer norm (LN) operation and skip connection 

added between the two modules. Self-attention (SA) is 

defined as: 

𝑆𝐴(𝐻𝑙) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝐻𝑙𝑊𝑄(𝐻𝑙𝑊𝐾)𝑇

√𝑠
) (𝐻𝑙𝑊𝑉), (4) 

where 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 ∈ ℝ𝑑×𝑑  represent the query 

matrix, the key matrix, and the value matrix. 𝑋𝑙 is the 

output of the l-th Transformer layer. s is part of the 

scaling factor 
1

√𝑠
. In SA, s equals the dimension d of the 

tokens. MSA is an extension of SA with h self-attention 

operations, which are called heads. In MSA, s is 

typically set to 
𝑑

ℎ
. Therefore, MSA can be formulated as: 

𝑀𝑆𝐴(𝐻𝑙) = [𝑆𝐴1(𝐻𝑙); 𝑆𝐴2(𝐻𝑙); ⋯ ; 𝑆𝐴ℎ(𝐻𝑙)]𝑊𝑃 , (5) 

After defining MSA, the operations of a Transformer 

block can be expressed as: 

𝐻𝑙−1 = 𝑀𝑆𝐴(𝐿𝑁(𝐻𝑙−1)) + 𝐻𝑙−1, (6) 

𝐻𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(𝐻𝑙−1)) + �̃�𝑙−1. (7) 

The MLP module is constructed by two linear 

projections, with a activation function in between. 

After the last Transformer layer, we can get the 

processed rating patterns of each user, denoted as: 

𝑃 = [𝑝1
𝑆, 𝑝2

𝑆, … 𝑝𝑘
𝑆, 𝑝1

𝑇 , 𝑝2
𝑇 , … , 𝑝𝑘

𝑇]. (8) 

 

Decoder. In order to get the final rating predictions of 

each user. We need to reconstruct the hidden 

representations into the original rating space. This is  
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Table 1: Statistics of the datasets. 

No. Year 
Dataset User# Item# Ratings# Sparsity 

Source Target Shared Source Target Size Source Target Source Target 

1 2014 Automotive 
Toys and 
Games 

1637 11905 16070 3.63M 1373768 2252771 99.91% 99.91% 

2 2018 
Movies and 

TV 

Office 

Products 
- - - 14.35M 8765568 5581313 - - 

2 
(pruned) 

2018 
Movies and 

TV 
Office 

Products 
3026 10465 8303 5M 2500000 2500000 99.84% 99.89% 

 

achieved by two domain specific decoders. Similar to 

the encoders, they can be formulated as: 

�̂�𝑢
𝑆 = 𝒟𝑆(𝑝𝑢

𝑆) = 𝜎(𝑊3𝑝𝑢
𝑆 + 𝑏3) (9) 

�̂�𝑢
𝑇 = 𝒟𝑇(𝑝𝑢

𝑇) = 𝜎(𝑊4𝑝𝑢
𝑇 + 𝑏4) (10) 

where 𝒟𝑆(•) and 𝒟𝑇(•) denote source domain encoder 

and target domain encoder. �̂�𝑢
𝑆  and �̂�𝑢

𝑇  are the rating 

predictions on source and target domains of the 𝑢 -th 

user. In the inference stage, only the �̂�𝑢
𝑇  is used for 

evaluation. 

The overall architecture of Transformer-based 

autoencoder framework can be concisely summarized as: 

�̂�𝑇 = 𝒟𝑇 (𝒯(ℰ𝑆(𝑦)⨁ℰ𝑇(𝑦))) (11) 

where ℰ(•)  is the encoder. 𝒯(•)  denotes Transformer 

blocks. ⨁ is the matrix concatenate operation. 𝒟(•) is 

the decoder. 

4. Experiments 

4.1. Experimental Settings 

Datasets. In this section, we evaluate our model on 

two subsets from Amazon review dataset 2014 [13, 14] 

and Amazon review dataset 2018 [15] with shared users 

in different categories. We define different item 

categories as domains, where we select users with at 

least 5 ratings (5-core). We select categories that are 

relatively irrelevant. The details of two datasets are 

shown in Table 1. Statistics show that both the source 

and target domain are extremely sparse with most 

ratings are unobserved. Since the original dataset 2 is too 

large and it takes over 2 hours for preprocessing, we 

must compromise to use the pruned version with smaller 

data. The original data files are preprocessed using the 

code from DARec [16] to get the shared users in source 

and target domain.  

 

Implementation details. The batch size is set to 7 and 

the group size is set to 200. We train our model for 200 

epochs. We use Adam optimizer with a weight decay of 

1e-5. The learning rate is set to 0.001. The embedding 

size is set to 200. In pretrained embedding scenarios, we 

 
2 https://github.com/Yu-Fangxu/DARec 

train the encoder from AutoRec. The encoder is trained 

with 40 epochs when the loss is stable. For Transformer 

hyperparameters, we set the depth to 3, head number to 

5, MLP ratio to 4, and the hidden dimension to 200. We 

train our model on one NVIDIA RTX2060 GPU on a 

laptop devise. In the inference stage, the user group size 

is set to 40 by default. 

 
Table 2: Comparison with baseline CDR models on RMSE. 

Methods 

Dataset 

Automotive & Toys 
and Games  

Movies and TV & 

Office Products 

(pruned) 

AutoRec 3.4668 2.1704 

U-DARec 3.4533 2.1486 

TransCDR 

(ours) 
3.4393 2.1319 

4.2. Comparison with Baselines 

We compare our approach with several relevant state-

of-the-art CDR models. 

• AutoRec [10]: AutoRec uses autoencoder to 

perform the unknown rating from the observed ones. 

• CoNet [17]: CoNet is a transfer learning method 

that enables dual knowledge transfer across domains 

by introducing cross connections from one base 

network to another and vice versa. 

• DARec [16]: DARec is a deep domain adaptation 

model that is capable of extracting and transferring 

patterns from rating matrices only and without relying 

on any auxillary information. 

For AutoRec and DARec, we use an opensource 

implementation2. We use the default configurations for 

time efficiency. For CoNet, we didn’t conduct 

experiments due to limited time. Table 2 shows the 

RMSE results of our method and compared methods. 

We can observe that our method outperforms AutoRec 

and DARec on two datasets, which shows the capacity 

of our method. 

Optimization performance. In order to verify that 

our model is adequately trained and not overfitted on the 

dataset, we record loss curve during training. Results in 

Fig. 2 show that our model is appropriately trained on 

both datasets. 
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Figure 2: Loss curve during training. 

4.3. Ablation Studies 

In this section, we conduct abundant ablation studies 

on our model parameters and analyze their contribution 

to the model. Experiments are conducted on the first 

dataset by default.  

 

Effect of Transformer layers. We set different number 

of Transformer layers to investigate the effect of the 

depth of our model. We conduct experiments on two 

datasets. First, we remove all Transformer blocks and 

directly use the embeddings as the input of the decoder. 

As shown in Table 3, compared to the standard model, 

removing the Transformer blocks significantly harms 

the performance. Therefore, the Transformer layers is 

necessary and effective as the core of TransCDR. 

Moreover, we further investigate the number 

Transformer layers. Results in Fig.3 show the tendency 

that deeper network leads to better performance. 

 
Table 3: Ablation study on Transformer blocks. 

Transformer 

Blocks 

Dataset 

Automotive & Toys 

and Games 

Movies and TV & 

Office Products 
(pruned) 

 3.4710 2.1854 

 

(3 by default) 
3.4393 2.1319 

 

 
Figure 3: Effect of the number Transformer layers. 

 

Effect of group size. Group size (i.e., the number of 

users inputted into the Transformer in a single time) is 

the maximum token number (MTN) in to the 

Transformer input. MTN effects the computation 

complexity of self-attention (SA) in Transformer, with 

is the major computational cost of the model. The 

computational complexity is quadratic to MTN [18]. 

This relationship is formulated as: 

Ω(𝑆𝐴) = 4𝑘𝐷2 + 2𝑘2𝐷. (12) 

where 𝑘 denotes maximum token number and 𝐷 is the 

embedding dimension. Normally, in NLP or computer 

vision, the maximum token number is set to about 200. 

Therefore, in our experiments, we test 𝑘 from 50 to 400 

and record the training time in each input. Results in 

Fig.4 show that there is no significant discrepancy in 

different group size, but the training is monotonously 

increasing as the group size increases. 

 
Figure 4: RMSE on different group size and corresponding training 

time consumption. 
 

 
Figure 5: Effect of embedding dimension and pre-trained user 

embeddings.  

 

Ablation studies on user embeddings. We investigate 

the embedding settings of TransCDR. We conduct 

experiments on two aspects: 1) Effect of pretraining: the 

embeddings can be either trained using Autorec or 

directly trained end-to-end in the TransCDR. 2) Effect 

of the dimension of embeddings. Results in Fig.5 show 

that pretraining the encoder from AutoRec brings no 

improvement to the model. The best result is yielded  

Dataset 1 Dataset 2 (pruned)
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Figure 6: RMSE on different user group size in inference and inference 
time. 

 

when the embedding size is 400 without pretraining. The 

model is better to be trained in an end-to-end manner to 

reserve the consistency of embeddings and hidden 

representations. 

 

Effect of user group size in inference. In the inference 

stage, the input of our model could be a group of users 

or a single user with reference users. When the user 

ratings are predicted in groups, the inference time on per 

user reduces. Figure 6 shows the results of different 

group size and corresponding inference time per user. In 

this experiment, the maximum token number (MTN) is 

set to 200, which means the maximum group size is 

limited to 200. The best results are gained when the 

inference group size is set to 40~80. The main reason is 

that the relationships of users can be better learned in 

this setting. 

4.4. Visualization  

We visualize the similarities of the user rating 

patterns to reveal the similarity and relationships of the 

users. Specifically, we use t-SNE to map several 

different high-dimensional rating representations of 

users in the testing dataset 1. Results are shown in Fig.7. 

The top left one is the visualization of original ratings of 

each user. We can observe that in this representation, 

each user is an isolated point, which means there are no 

similarities among users. The top right one is from the 

AutoRec encoded representation. Results show that 

although the users in this representation have some 

similarities, but it is hard to find cluster patterns, which 

indicate the similar user rating patterns. In contrast, in 

our encoded embeddings in the bottom left corner, this 

cluster patterns are more obvious. Moreover, the 

processed hidden rating patterns of our model in the 

bottom right corner show the strongest cluster properties. 

This means that our method can better encode the user 

rating patterns in similarities and process the 

relationships of different users. 

 
Figure 7: t-SNE visualization of user rating patterns in different 

representations. 

5. Conclusion 

In this paper. We introduced a novel group enhanced 

methodology for CDR that calculate a group of users’ 

ratings in parallel. Besides, we explored Transformer 

framework for cross-domain recommendation for the 

first time. Concretely, the proposed TransCDR encodes 

the user ratings into the latent space embeddings. Then, 

the semantic information of rating representations is 

learned by Transformer. Finally, the decoder 

reconstructs the ratings back to the original rating space 

for prediction. Abundant experiments and visualizations 

verify our methodology for CDR. We hope our initial 

work of group enhanced methodology and Transformer 

framework will inspire and facilitate future research for 

CDR. 

6. Future Work 

Due to the limited time, we provide three possible 

directions for future work to improve the naïve 

TransCDR, listed as follows: 

1) Introducing Graph clusters of users. In this 

paper, the user group is randomly selected from the 

dataset. Therefore, in some cases, the selected group 

may cannot include similar rating patterns. If the user 

group is sampled from strongly related users, the rating 

patterns can be better revealed by the attention 

mechanism in the Transformer layers. 

2) Adding a classifier to specify the source domain 

and target domain. In this paper, we did not add 

constraints on the output of the source domain and target 

domain, which means the domain information is not 

explicitly learned during the training stage. Therefore, it 

might help to add a classifier after the output hidden 

representations of the two domains and specify the 

domain as a classification subtask. We believe that 
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training with the domain information will improve the 

performance of TransCDR. 

3) Explore item autoencoder and deep 

autoencoder. Autoencoder framework is the main 

ideology of this work. We believe that a good 

autoencoder architecture can better represent the rating 

patterns thus better reveal the property of pattern. In 

some scenarios, item based autoencoder may have better 

performance. Besides, deeper autoencoder may have 

stronger capacity of learning the latent representation of 

rating patterns. 
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